SPRING 2025 MATH 590: QUIZ 6

Name:

1. State the theorem that characterizes when an $n \times n$ matrix A s diagonalizable over F. Be sure to define all terms used in the statement of the theorem. (5 points)

Solution. The matrix A is diagonalizable if and only if the following conditions hold: (i) $p_a(x)$ has all of its roots in F, i.e., $p_A(x) = (x - \lambda_1)^{e_1} \cdots (x - \lambda_r)^{e_r}$, for $\lambda_i \in F$ and $e_i \geq 1$ and (ii) For each $1 \leq i \leq r$, $\dim(E_{\lambda_i}) = e_i$, i.e., for each eigenvalue λ_i , the geometric multiplicity of λ_i equals the algebraic multiplicity of λ_i .

Terms: $p_a(x) = |xI_n - A|$ or $p_A(x) = |\lambda I_n - A|$ - the order doesn't matter, either one can be defined as $p_A(x)$.

 E_{λ_i} is the eigenspace of λ_i .

Use of the terms geometric and algebraic multiplicity is not required, but if used: the geometric multiplicity of λ_i is the dimension of E_{λ_i} and the algebraic multiplicity of λ_i is e_i .

2. Diagonalize the matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$, and verify that eigenvectors corresponding to the two distinct eigenvalues are orthogonal. This is an important property of symmetric matrices. (5 points)

Solution. $p_A(x) = \begin{vmatrix} x-1 & -2 \\ -2 & x-1 \end{vmatrix} = (x-1)^2 - 4 = x^2 - 2x - 3 = (x+1)(x-3)$, so the eigenvalues of A are -1 and 3. $E_{-1} = \text{null space of} \begin{pmatrix} -2 & -2 \\ -2 & -2 \end{pmatrix} \xrightarrow{\text{EROs}} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$. Thus, $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ is a basis for E_{-1} .

 $E_3 = \text{null space of} \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \xrightarrow{\text{EROs}} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}. \text{ Thus, } \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ is a basis for } E_3.$

The diagonalizing matrix is $P = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$, and $P^{-1} = -\frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}$,

$$P^{-1}AP = -\frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} -1 & 1 \\ -3 & -3 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}.$$

Taking the dot product, $\begin{pmatrix} -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = -1 + 1 = 0$, therefore, the corresponding eigenvectors are orthogonal.